Mixed-Mode Cellular Array Processor Realization for Analyzing Brain Electrical Activity in Epilepsy
نویسنده
چکیده
This thesis deals with the realization of hardware that is capable of computing algorithms that can be described using the theory of polynomial cellular neural/nonlinear networks (CNNs). The goal is to meet the requirements of an algorithm for predicting the onset of an epileptic seizure. The analysis associated with this application requires extensive computation of data that consists of segments of brain electrical activity. Different types of computer architectures are overviewed. Since the algorithm requires operations in which data is manipulated locally, special emphasis is put on assessing different parallel architectures. An array computer is potentially able to perform local computational tasks effectively and rapidly. Based on the requirements of the algorithm, a mixed-mode CNN is proposed. A mixed-mode CNN combines analog and digital processing so that the couplings and the polynomial terms are implemented with analog blocks, whereas the integrator is digital. A/D and D/A converters are used to interface between the analog blocks and the integrator. Based on the mixed-mode CNN architecture a cellular array processor is realized. In the realized array processor the processing units are coupled with programmable polynomial (linear, quadratic and cubic) first neighborhood feedback terms. A 10mm2, 1.027 million transistor cellular array processor, with 2 72 processing units and 36 layers of memory in each is manufactured using a 0.25μm digital CMOS process. The array processor can perform gray-scale Heun’s integration of spatial convolutions with linear, quadratic and cubic activation functions for 72 72 data while keeping all I/O operations during processing local. One complete Heun’s iteration round takes 166.4μs, while the power consumption during processing is 192mW. Experimental results of statistical variations in the multipliers and polynomial circuits are shown. Descriptions regarding improvements in the design are also explained. The results of this thesis can be used to assess the suitability of the mixed-mode approach for implementing an implantable system for predicting epileptic seizures. The results can also be used to assess the suitability of the approach for implementing other
منابع مشابه
The Effects of Kainic Acid-Induced Seizure on Gene Expression of Brain Neurotransmitter Receptors in Mice Using RT2 PCR Array
Introduction: Kainic acid (KA) induces neuropathological changes in specific regions of the mouse hippocampus comparable to changes seen in patients with chronic temporal lobe epilepsy (TLE). According to different studies, the expression of a number of genes are altered in the adult rat hippocampus after status epilepticus (SE) induced by KA. This study aimed to quantitatively evaluate changes...
متن کاملLattice-Plasmon Quantum Features
in this work, some of the lattice plasmon quantum features are examined. Initially, the interaction of the far-field photonic mode and the nanoparticle plasmon mode is investigated. We probe the optical properties of the array plasmon that are dramatically affected by the array geometry. It is notable to mention that the original goal of this work is to examine the quantum feature of the array ...
متن کاملA Brief Overview of Epilepsy with Emphasis on Children
Epilepsy is a brain disorder in which a person has repeated seizures over time. A seizure is a sudden change in the electrical and chemical activity in the brain. A single seizure that does not happen again is NOT epilepsy. Most children with epilepsy live a normal life. Certain types of childhood epilepsy go away or improve with age, usually in the late teens or 20s. Nearly 80% of people with ...
متن کاملMaximum Power Point Tracking Using Sliding Mode Control for Photovoltaic Array
In this paper, a robust Maximum Power Point Tracking (MPPT) for PV array has been proposed using sliding mode control by defining a new formulation for sliding surface which is based on increment conductance (INC) method. The stability and robustness of the proposed controller are investigated to load variations and environment changes. Three different types of DC-DC converter are used in Maxim...
متن کاملO 22: Reactive Oxygen Species and Epilepsy
Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...
متن کامل